# Spin Distributions in the Pre-Equilibrium Process

#### T. Kawano, M.B. Chadwick

T-16, Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA



# Introduction

### **Compound Nuclear Reaction**

- Spin Distribution of Compound Nucleus
  - $n + A \rightarrow (A + 1)^*$
  - Spin distribution of  $(A + 1)^*$  is calculated with the optical model transmission coefficients,  $T_i$ .

$$R(J)$$
  $|I-j| \le J \le I+j$ 

- Spin Distribution of the Residual Compound Nucleus (Decay of CN)
  - $(A+1)^* \to n' + A^*$
  - lacktriangle Spin distribution of  $A^*$  is calculated from:
    - the first compound nucleus, R(J),
    - transmission of emitted particle, T'(j), and
    - spin distribution of residual nucleus (continuum),  $R'(E_x, J)$ .



# Compound or Pre-compound Process





# Statistical Theory

### **Compound Formation Cross Section**

- Decay of CN is independent of the formation of CN,
- however spin distribution of initial CN population depends on the transmission of incident particle.

### **Surrogate Reaction (example)**

- For the neutron incident reactions on <sup>87</sup>Y, the compound state is <sup>88</sup>Y.
- The same compound can be formed by  $\alpha$ -particle incident reactions on <sup>85</sup>Rb.





# Transmission (Optical Model Calc.)





† Equivalent neutron energy,

$$E_n^{CMS} = E_\alpha^{CMS} - Q$$



# Pre-Equilibrium Theories (I)

### **Classical Theory**

- Exciton Model
  - Nuclear state n-particle (n-1)-hole state
  - Transition rate  $\lambda_{nn'} = \frac{2\pi}{\hbar^2} |M|^2 \rho_{n'}$
  - Solve a master equation time-dependent occupation probability P(n,t) of the n-exciton states.
  - The matrix element  $|M|^2$  is regarded as an adjustable parameter.
  - Generally the exciton model gives a good fit to the energy distribution of emitted particles, however, a traditional exciton model cannot calculate angular distribution.
- Intra-Nuclear Cascade (INC)
  - Cannot apply to low-energy reactions.



# Pre-Equilibrium Theories (II)

### **Quantum Mechanical Theory**

- Feshbach, Kerman, and Koonin (1980) FKK
- An extension of DWBA to the continuum state
- Particle-Hole excitation similar to the exciton model
- Q-space (Multistep Compound, MSC)
  - Final state is bound
  - Residual System: 2p-1h, 3p-2h, 4p-3h, . . .
  - MSC gives an isotropic angular distribution
- lacktriangle  $\mathcal{P}$ -space (Multistep Direct, MSD)
  - At least one particle is unbound
  - Nesidual System: 1*p*-1*h*, 2*p*-2*h*, 3*p*-3*h*, . . . .
  - MSD has a forward-peaked angular distribution



# $\mathcal{P}$ -Space, $\mathcal{Q}$ -Space





# Multistep Compound Process (MSC)

### Strength of 2p-1h Formation



- $^{93}$ Nb+n reactions.
- Microscopic calculation of doorway state formation cross section.
  - DWBA transition matrix elementx final state density.
- Phase-space approximation of Chadwick and Young.
  - Estimated a fraction of MSC by using a final state density.



# Strength of MSC

# DDX Data of <sup>93</sup>Nb at 14 MeV







### MSD Theories

- FKK: Feshbach, Kerman, Koonin (1980)
  - On-Shell Approximation for Green's Function
- TUL: Tamura, Udagawa, Lenske (1982)
  - Random Phase Approximation (RPA)
  - Adiabatic Approximation for the Second Step
- NWY: Nishioka, Weidenmüller, Yoshida (1988)
  - Random Matrix Theory (GOE)
  - Sudden Approximation for the Second Step
- SCDW: Luo, Kawai, Weidenmüller (1991,1992)
  - Eikonal Approximation for the Second Step

One-step process is dominant below 20 MeV, and the one-step expression of FKK, TUL, and NWY is the same (in principle).





# Comparison of FKK, TUL, and NWY

|                     | FKK                           | TUL                           | NWY          |
|---------------------|-------------------------------|-------------------------------|--------------|
| Approximation       | on-shell                      | Adiabatic                     | Sudden       |
| Statistical Average | Each                          | Each                          | Final        |
| State density       | $ ho_{1p1h}\otimes ho_{1p1h}$ | $ ho_{1p1h}\otimes ho_{1p1h}$ | $ ho_{2p2h}$ |
| Model               | Équidistant                   | RPA 1                         | GÔE          |
| Interference        | No                            | No                            | Yes          |

#### **Time Scale**





# NWY Theory

- Quantum Mechanical Theory for the Pre-Equilibrium Process (MSD)
- Residual System Statistics
- use so-called True Level Density,  $\rho_{\mu m}(E)$  which includes a Residual Interaction, V
- The Level (State) Density is different from the equidistant-spacing model of Ericson and Williams.
- one-step: (DWBA)  $\times$  (1p-1h Strength)
- two-step: (2nd order DWBA)  $\times$  (2p-2h Strength)
- Sudden Approximation is made for the second step.



# Sudden Approximation

- An additional p-h pair creation is much faster than residual configuration mixing.
- An intermediate state is always an 1p-1h state.
- Amplitudes for the different paths to reach the same final state interfere each other.





# Residual System Statistics

- Observable Cross Sections
  - various microscopic 2p-2h state excitation averaged over the residual state
- True Level Density of Sato, Takahashi, and Yoshida Based on the Random Matrix Model Z. Phys. A, 339, 129 (1991).
- lacktriangle Hamiltonian for the Nuclear System H=h+V
  - h independent particle model

$$(h - \epsilon_{m\mu})|m\mu\rangle = 0$$

ullet residual interaction: V is assumed to form a GOE which is characterized by a second moment  $\mathcal{M}_{mn}$ 



### True Level Density

#### **Unperturbed State Density**

$$\rho_m^{(0)J\pi}(E) = \sum_{\mu} \delta(E - \epsilon_{m\mu})$$

#### **Exciton State Density for fixed** $J\pi$

$$\rho_m^{J\pi}(E) = -\sum_{\mu} \frac{1}{\pi} \text{Im} \frac{1}{E - \epsilon_{m\mu} - \sigma_m^{J\pi}(E)}$$

#### **Saddle Point Equation**

$$\sigma_m^{J\pi}(E) = \sum_n \mathcal{M}_{mn} \int \rho_n^{(0)J\pi}(\epsilon) \frac{1}{E - \epsilon - \sigma_n^{J\pi}(E)} d\epsilon$$



### Second Moment

Calculated for  $^{208}{\rm Pb}$ , with the M3Y-Paris Interaction which contains the central part  $V^C$  and the tensor part  $V^T$ 

$$V^C = \sum_{st} V_{st}^C(\sigma_1 \cdot \sigma_2)(\tau_1 \cdot \tau_2) Y(\mu r)$$

$$V^T = \sum_{t} V_t^T (\tau_1 \cdot \tau_2) S_{ij} Y(\mu r)$$





### Saddle Point Value

### true level density

$$\rho_m^{I_B}(E_x) = -\frac{1}{\pi} \operatorname{Im} \frac{1}{E_x - \epsilon_B - \sigma_m^{I_B}(E_x)}$$



- $Re(\sigma_m) = energy shift$
- $Im(\sigma_m) = energy spread$



# Example: 1p-1h State Distribution

<sup>208</sup>Pb, 
$$|1g_{7/2}(0h_{9/2})^{-1}\rangle_{\nu}$$
,  $E_x$  =10.15 MeV





# p-h State Density





# **One-Step Cross Section**

$$\frac{d^2 \sigma_{ba}}{dE d\Omega} = \frac{(2\pi)^4}{k_a^2} \sum_{\mu} |\langle \chi_b^{(-)} u_{m\mu} | \mathcal{V} | \chi_a^{(+)} u_0 \rangle|^2 \rho_{m\mu}(E_x)$$

•  $^{208}$ Pb(n, n') reaction at:

$$E_{in} = 14.5$$
,

$$E_{out} = 7.5 \text{ MeV}$$

- Walter-Guss' optical potential
- M3Y interaction
- Yukawa interaction:

$$V_0 = 70 \text{ MeV}, \text{ and } r_0 = 1 \text{ fm}$$





### Bonetti Approach

#### **FKK One-step Calculation**

$$\frac{d^2\sigma_{ba}}{dEd\Omega} = \frac{(2\pi)^4}{k_a^2} \sum_{\mu} |\langle \chi_b^{(-)} u_{m\mu} | \mathcal{V} | \chi_a^{(+)} u_0 \rangle|^2 \rho_{m\mu}(E_x)$$

$$= \sum_{j} \frac{(2\pi)^4}{k_a^2} \overline{|\langle \chi_b^{(-)} u_{m\mu} | \mathcal{V} | \chi_a^{(+)} u_0 \rangle|^2} (2j+1) \widehat{\rho}_{1p1h}(E_x, j)$$

$$= \sum_{j} \langle \left( \frac{d\sigma_{ba}}{d\Omega} \right)_{DWBA} \rangle_{j} \widehat{\rho}_{1p1h}(E_x, j)$$

- Averaged DWBA cross section
  - lacktriangle particle-hole excitation, with angular momentum transfer of j
- Phenomenological level density  $\hat{\rho}_{1p1h}(E_x, j)$



# **Example** — **U-238**

### **Neutron Inelastic Scattering**

$$^{238}U(n,xn), E_n = 14.1 \text{ MeV}$$

- DWBA formfactor for p-h excitation is a simple Yukawa-form.
- The strength of Yukawa interaction  $V_0$  is adjusted to experimental DDX data.
- $V_0 = 50.5 \text{ MeV}$
- Multi-Step Compound (MSC) included.









# Pre-Compound Spin Distribution

### **Spin Distribution of Residual Nucleus**

- $^{87}$ Y+n reaction at  $E_n$  =14 MeV.
- Excitation energy of 6 MeV
- Koning-Delaroche global optical potential for incident neutron.
- Ground state spin  $I = 1/2^-$  is assumed to be zero.
- FKK calculation does not have a high J component, because of p-h configurations.





### Energy Spectrum

### **Cmparison of FKK calc. with Exciton Model**

- 14 MeV neutron induced, neutron emission reaction on <sup>87</sup>Y.
- The FKK MSD calculation is re-normalized to GNASH calculation (Exciton model).
- The MSD cross section is 20% of total reaction cross section.





# Dominant Process at 14 MeV





# Concluding Remarks

- Spin-distribution of the pre-equilibrium process can be calculated with quantum mechanical theories — FKK, NWY, and TUL.
- Microscopic calculations of both MSC and MSD were described.
- MSC contribution is very small.
- For  $^{87}Y(n, n')$  reaction at 14 MeV, MSD is about 20% of total reaction cross section, and the compound reaction is still a dominant process at low energies.
- Spin-distribution of the residual nucleus may not have a big impact on the surrogate reaction technique if an incident neutron energy is not so high, however, further study is needed (quantitatively):
  - lacktriangle Probabilities of  $\gamma$ -ray cascade
  - High energy reactions
  - Large target spin

